If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2-9t-60=0
a = 2; b = -9; c = -60;
Δ = b2-4ac
Δ = -92-4·2·(-60)
Δ = 561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{561}}{2*2}=\frac{9-\sqrt{561}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{561}}{2*2}=\frac{9+\sqrt{561}}{4} $
| 24=6(w-95) | | 18x+21+3x^2=0 | | y4+3=−8 | | 3x+12-6x=9 | | 12m+150=$1138 | | 19-5n=-2(6n+1) | | x+65+150=180 | | 8x-6/2=x/12 | | -3/4h=9/11 | | n-n+n-n+4n+2=10 | | -3x5=-5x2 | | 4x+5(×-1)=4x+30 | | -7+-5u=53 | | y/4+3=-8 | | 0.66x+4=0.16x-3 | | (x-3)+2x=-(x-5)=+4 | | 7+14=-3(4x-7) | | 3x+2=7+3x-5 | | 40+25x=40x | | (14x-3)=(85) | | –3+2n=3n | | 24+x/6(360)=84 | | u/5+11=18 | | 21x+4=17x+16 | | 2p-10=90 | | 84+4x=3x+92 | | -7(z-92)=-7 | | -4-7f=-9f | | =4x2-20x+25 | | 2(b+2)+b-6=34 | | −3x+40=10 | | 8x+7x=216+3x |